
Avara Level Design Manual
version 1.0.0
copyright ©1995-1996, Juri Munkki

Introduction

One primary consideration in the Avara design has always been to make level editing as
easy as possible. No special purpose level editors are necessary, although they are quite
possible to write, if standard tools are not available. Avara is a set of tools for producing
several different kinds of networked games. The design is 100% object oriented, so it is
easy for us to expand it, yet remain compatible with existing levels.

Avara level design may seem complicated at first, because there are so many parameters
that you can change. The key is that you don't have to change them if you don't want to.
Start by just using the default object parameters and then explore the possibilities by
changing the parameters one by one.

Level Directory Files

Avara levels are defined as PICT files or resources. ClarisWorks™ is the recommended
program for designing Avara levels, but other programs may also be used, as long as they
create similar PICT files. To use PICT files, you need a level directory file where the level
you edit has been declared to exist in a file. The level file has to be in the same folder as the
level directory file. To use PICT resources, the level directory file must indicate that the level
is loaded from a resource and the resource must be placed in the level directory file and
named correctly.

Level files (PICT files) are recommended for debugging and trying out levels and level
resources (PICT resources) are recommended for shipping or distributing levels after they
have been fully developed and debugged. With PICT files, you don't even have to quit
Avara to make a change to a level. Just open the directory file into Avara and every time you
make a change, reload the level from the file by clicking on it.

Resources

The level directory file contains one 'LEDI' resource with a resource id of 128. This
resource serves as a directory to all the levels this file contains or accesses. In addition to
this resource, the file may contain any number of 'BSPT' (Binary Space Partitioned Tree)
resources for describing object shapes and any number of 'HSND' resources for
compressed sounds. The only required resource is the 'LEDI' resource. If the following
paragraphs seem difficult to grasp, don't worry: you may not need the informaton.

superfly
replacementdocs

'BSPT' resources are created from DXF (AutoCAD™ drawing exchange file) files by running
them through the BSPSplitter program and the BSPViewer program. Colors for 'BSPT'
resouces are defined in a ColorLib file where DXF layer names are mapped into RGB (red,
green, blue) colors. The BSPViewer program can be used to verify that visible surfaces are
correctly defined in an object and correct the faults, if necessary. There's a more detailed
section on 3D modeling for Avara later in this manual.

Resource ID numbers between 1000 and 2999 are allowed in a level directory file. All other
resource IDs are reserved for use by Avara or the system. The only exception is the 'LEDI'
resource.

Level Files and Resources

A level file is just a drawing of the level map. The order in which the shapes are in the
drawing is important. Drawing programs typically have commands such as: 'Send Behind',
'Bring Forward'. A shape that is behind another one appears before that one in a level file.
Avara processes level files from back to front (the same order that they are drawn onto the
screen). If this seems confusing, there's a more detailed explanation at the end of this
section, along with an example.

The most important shape is the text shape. This is just a box of text where you type a
program that Avara will then parse and execute when it loads that level. More information
on the language itself is given later in this manual.

If you wish to declare variables or constants for your own use in a level file, make sure that
the text shape is behind all the other shapes on a level. Optionally you can place the
definitions in a 'TEXT' resource of ID 1000. It will be loaded before any of your Level PICTs.
This is in fact an ideal place to define named constants for any shape or sound resources
that you may have created.

Important: Text objects should always be transparent. Some drawing programs implicitly
place a white rectangle as a background for a solid text box. If you can't see what's behind
the text, you probably have a solid rectangle there. The rectangle color will interfere with the
object colors that you have set elsewhere.

Filled rectangles and rounded rectangles are also important, since they are the easiest way
to place walls in an Avara level. The default wall height is 3 meters, but it can be changed
with the wallHeight parameter.

Round cornered rectangles can be used to create walls of various heights. In
ClarisWorks™, if you double-click on a rectangle or a roundrect, a dialog box will prompt
you to enter the radius of the corners. The conversion from rounding radius is done by
multiplying the diameter by the variable pixelToThickness. The default value for
pixelToThickness is 1 / 8.

This means that by default 12 pt radius is equivalent to a wall height of 3 meters. Each pt in
radius is thus 25 cm (a quarter meter). Note that some drawing programs may want you to

enter the rounding diameter instead of the radius. In this case, each point in diameter is
12.5 cm (one eighth of a meter).

Walls can also be placed off the ground and on top of each other, to construct more
complicated structures like roofed areas.

Arc segments (like this:) are used to indicate the position, direction and color of an
object and can also be used to create quarter, half and 3/4 domes. The tip points to the
direction the next object will be facing. If you want to place several objects in the exact same
place, you can use the same arc segment for all of them. A good example of this would be a
hologram (a 3D shape that you can walk through) combined with an object that does not
have a shape (such as an reincarnation spot).

Ovals are used to mark areas or to create full domes. In the current implementation, only
circular areas are supported, so if the horizontal and vertical dimensions of an oval are not
equal (in other words it is not a circle), the larger dimension will be used for both. In practice
the areas also extend up to form a full sphere, so keep that in mind when designing a level
in three dimensions. (The area may extend from one floor to another.)

Currently all other drawing shapes are simply ignored, but they are all reserved for future
use, so you should not use them in your levels.

Details and Troubleshooting PICTs

Part of this subsection assumes you know things that come later in the manual. You may
want to read it through now and read it again after you have read through the manual once.

Q: I don't get this "Back" and "Front" deal.
What needs to be in back of what, and what needs to be in front?

A PICT file is a bit like a program or a cooking recipe. For instance, if you have rectangle
with some text in it, the instructions to do so might be something like:

draw a filled rectangle with coordinates {{0,0},{200,100}}
outline that same rectangle
a block of text starts here
draw text "Hello" with Helvetica 12 at coordinate {2,14}
draw text "World" with Helvetica 12 at coordinate {2,30}
text block ends

That's what Avara will see. Whatever comes first ends up behind what comes after, if the
graphics overlap. Visual overlap however has absolutely no significance in Avara: all that
matters is the order in which the opcodes (instructions) in the picture come.

The next thing you need to know is when objects are actually created. Walls are a special
case: they are created when the rectangle frame frame is drawn. Other objects are usually
created by writing:

object Type
 parameters = expressions
end

This means that if the object "Type" needs a location that has been defined with an arc
segment somewhere, that arc segment has to be the last arc segment before the text.

On the other hand, if you need to set a wall parameter, like the altitude at which the wall is
placed (parameter wa), then that text has to come before the rectangle frame.

So, for instance: (omitting PICT stuff that Avara doesn't need)

1 draw text "wa = 0.5"
2 draw a red filled rectangle with coordinates {{0,0},{200,100}}
3 frame the last rectangle with black
4 fill a blue arc segment with coordinates {{300,300},{350,350}}

from 0 degrees with 90 degree angle
5 frame last arc segment with white
6 draw text "object Incarnator end"
7 draw text "object Hologram end"

What this does is place a wall 0.5 meters from the ground. The wall color is defined at step
2, but the wall is created at step 3 (because walls are created when they are framed, but the
fill color is used for color).

The arc itself does nothing, except changes the current colors to blue and white and
remembers its location and orientation.

The text coming at step 6 will create an incarnator at the tip of the arc. Incarnators do not
have color, so the color is just ignored.

The text coming at step 7 will create a hologram at the same location and the hologram will
be colored with blue and white. The default hologram only uses one color (the blue fill
color), so the other color is in this case ignored.

I hope this helps. I guess the confusing part is that Avara is treating the PICT like a computer
program and people are used to thinking of pictures as pictures, instead of sequences of
instructions or opcodes.

Q: If I copy a PICT into ClarisWorks, make a change and put it back,
it no longer works!

If you read back the PICT version of, say Fort of Bob, ClarisWorks will join lines of text
without putting returns or even spaces in between.

So, the following:

object Incarnator
end

May become:

object Incarnatorend

This is a ClarisWorks bug and will hopefully be corrected in a future release. Other
programs may or may do not better in this respect.

The Scripting Language

The Avara scripting language is roughly similar to the language that is used to declare
Arashi levels. It follows a fairly simple syntax that allows you to define formulas for variables,
declare enumerated constants and create objects.

All keywords and variables names are case-sensitive. That means that my_variable is not
the same as My_Variable because 'm' does not match 'M' and 'v' doesn't match 'V'. Object
classes start with a capital letter, parameter names with a small letter. ('Door' is a class,
'speed' is a parameter.)

Variables are declared simply by

variable = expression

Where the variable name may contain any characts a-z, A-Z, '[', ']', '\', '|', '{', '}' '_', 0-9 and '.'
as long as the first character is a letter. The expression may contain references to other
variables, numerical constants and the following operators: +, -, *, /, % (modulo), ^ (power), |
(absolute value a = |-1 is the same as a = 1), <, >, =. Usually you will just need to assign a
constant value to a variable like this:

speed = 10

But of course you could just as well have declared that:

speed = 5 + 5

For clarity, please use spaces as illustrated above.

The Avara language uses lazy evaluation. This means that it doesn't evaluate variables
unless it has to. To illustrate:

a = 1
b = a + 1
a = 2

Most programming languages would evaluate this differently from Avara. In Avara, new
definitions for variables replace old ones, so in Avara a = 2 and b = a + 1, which means that

evaluating b gives you 3.

The most important kind of statement is the object declaration statement. It is used to create
objects in an Avara level. In most cases you precede the object placement statement with a
graphical shape (like a filled arc segment) to specify the location and direction of the object.
The syntax of an object declarition is like this:

object class
optional assignments
end

A list of classes that you can use is given later in this manual. The assignments are used to
override default values for object parameters. Here's a real-life example of how you would
define a door:

object Door
open = @openDoor2
close = @closeDoor2
openSpeed = 7
closeSpeed = 5
end

In the above example, @openDoor2 and @closeDoor2 are constants that are used as
message numbers. Messages are broadcast between objects, so that if a player enters or
leaves an area, it can trigger a message, which can in turn open or close any number of
doors or activate other kinds of events. Notice that the door opens faster than it closes
(openSpeed = 7, while closeSpeed = 5). The arc segment on the left side of the of the text
defines which way the door is facing and where it is placed. The size of the arc is ignored.

The object initializes all its parameters to default values. It then parses and compiles the
assignment statements until an end keyword is found. At this point, it evaluates all its
parameters and the object is placed in the game (if necessary).

You can use the an enum statement to declare a series of numerical constants:

enum 1 One Two Three Four end

The first expression after the enum keyword is used for the first variable. In this case, the
variable One receives the value 1, Two receives 2, and so on. The 'end' keyword ends the
sequence. Enumerated variables may later be reassigned with other values, so be careful
when you choose variable names. Enums are mostly useful when you are declaring names
for resource numbers (for sounds and 3D shapes) that you use in your level directory files.

An alternative to the enum statement is the unique statement. The difference is that normally
you do not give the value of the first number. Instead, the numbers are given out
sequentially from a base. In Avara, this base is defined to start at 30000. All message
numbers equal to or higher than 30000 should be considered reserved for this purpose.
Here's an example of a "unique" statement:

unique mOpenGate mCloseGate end

object Door
openMsg = mOpenGate
closeMsg = mCloseGate

end

object Area
enter = mOpenGate
exit = mCloseGate

end

The advantage of unique constants is that you can reuse the same symbols many times. For
instance, the above script can be used several times on a level and the openGate and
closeGate variables will have new values each time, so that the area only controls one
door.

Because the danger exists that an object may use a variable name as a parameter and
change your value for it, it is recommended that local message variable names be prefixed
with a lower case m character. This guarantees compatibility with future versions of Avara.

You can also convert variable names into numerical constants. For instance, imagine that
you have the variables One Two Three and Four. In addition to the their value (which can
change over time and be anything), they all have unique indexes to identify them. (if you are
familiar with programming languages, you can think of it as the address of that variable,
although it's not an actual address in the computer's memory). To get the index number (or
address) of any variable, use the @-operator. You can only apply it to variable names. If the
variable does not already exist, it is automatically created for you. Use it like this:

open = @openNorth
close = @ closeNorth

In the above example, open and close each receive a unique value. If you use the
expression @openNorth anywhere within that level, the value is guaranteed to be the same
that was assigned to open.

In general, you should use "unique" statements for local message numbers and @-sign
notation for any global messages. The actual values of @-sign constants start from zero and
grow sequentially. This means that message number values of less than 1000 should be
considered reserved for @-sign constants.

Strings are enclosed in quotes like this:

text = "This is a string."

Strings can include return characters, but tabs will probably not work. If you want to include
the quote character, use two consecutive quote characters like this:

text = "Feel free to ""quote"" me on this one."

Comments work the same way as in C++, although you may want to be careful with the //
comment style, because it signifies that the rest of that line is to be considered a comment.
Because drawing programs wrap text automatically, some words from the end of the
comment may move to the next line.

Normally it is safest to enclose comments like this:

/* This is a comment */

The alternate style is:

// This is a comment.

Passing Messages

Object communicate between each other using messages. The message consists simply of
a message number. A message has a sender and any number of receivers. When the
objects are created, you have the option to assign numbers to certain message reception
slots. When that message is triggered, the object is notified and it acts accordingly.

Avara Objects

This section of the manual describes object classes in a tabular format. Each class
description begins with a line like this:

Superclass Class Description

If a class is abstract, it can not be placed in the game. The names of abstract classes are
placed in brackets and they are not available for placement in the game. Abstract classes
are incomplete, but their non-abstract subclasses can and should be used in the game.

It is important to understand inheritance when you read the table of objects. Each object has
the parameters of its superclasses as well as its own parameters. Default values for these
parameters may differ and in some cases some parameters may be ignored by a class or
simply used slightly differently (these differences are noted and documented in the
comments).

After the first line, a list of parameters with default value assignments for this object class are
listed. Please note that default parameter values may change slightly from one version of
Avara to another, so if you want to be absolutely certain of a value of a parameter, assign it
in the object declaration statement instead of relying on the default. New versions of Avara
may also introduce additional parameters. Old levels should still work, because default
parameter values are chosen so that they are compatible with old level files.

Superclass Class Description
class [actor] The following variables are supported by all actor types.

hitSound = hitSoundDefault
This is the resource id for the sound that the object makes
when it is hit with a missile or something explodes close to
it, possibly causing damage. The variable
hitSoundDefault is initialized by Avara, but can be
changed in the level file. Changing the default allows you
to change the sound for all objects that normally make the
default sound when they are hit.

hitVolume = 25 This changes the volume of the sound that is played when
the object is hit. Don't change this unless you have a good
reason.

blastSound = snBlast
blastVolume = 40 Defines the sound that is played when this actor is

destroyed.

shield = -1 Defines the shield for this actor. Negative numbers mean
infinite shield (indestructible objects).

power = 0 The explosion damage done at a distance of 1 meter or
less. From 1 meter on, the damage done is
power/distance^2. The minimum damage is 1/16 units, so
a mine with a blasting power of 2 will do the minimum
0.0625 units of damage at a distance of 5.6 meters.

team = 0 This assigns a team to the object. By default, most objects
belong to the computer team (team zero). Changing this
value may change the behavior of certain objects and can
affect how scores are calculated.

isTarget = false If isTarget is set to true, the object is considered a target by
the player HUDs and the HUD indicators will light up
accordingly.

hitMsg = 0
killMsg = 0 These messages are sent when an actor has been hit or

destroyed (in which case the hitMsg is also usually sent).

hitScore = 0
killScore = 0 Points are awarded according to the power of the hit

(energy * hitScore) or when the actor is killed.

shapeScale = 1 This variable allows you to scale any bsp shapes in an
object. Note that a scaled object uses more memory than
an unscaled one because certain structures can not be
shared if the object scale changes.

yon = 0 This determines how distant the "yon" clipping plane of a
3D object is. The default value of 0 means that the default

value (set by the user with the viewing distance) is used.
stepOnMsg = 0 This message is triggered when a player steps on this

object.
traction = defaultTraction
friction = defaultFriction

If the object can be walked on, these values define the
characteristics of the walking surface. There's a section on
these values near the end of the manual, after the level
variables section.

[actor] [placed] Arc segments are used to place, rotate and color objects
that belong to this class.

y = 0 The height of the object from the ground. You can think of
the coordinate system as the metric system. Since the
walker (or HECTOR) that the player controls is slightly
under 2 metres high, placing an object at y = 1.5 would
put it at about eye level. Most objects are designed to be
placed on the ground.

[placed] [glow] The actors in this class glow when they are hit, assuming
their shields are set to destructible by default. Glowing
actors with non-negative default shield values also use a
different default shield hit sound. As usual, you can
change it to whatever you want.

canGlow = true (or false) The value of canGlow depends on what the default
shields setting is for the subclass of [glow]. In any case, if
you want an object to glow when it is hit and it isn't
glowing, set 'canGlow' to true. If it is glowing when it
shouldn't, set 'canGlow' to false.

[glow] [shooter] Shooters are objects that can shoot in any direction.
These currently include the "Ufo" , "Ball" and "Pill" objects.

mask = allTeams
watch = playerMask Similar to "Guard". See description of Guard or Ufo.
activeRange = 100 This is the radius within which the shooter looks for targets

to shoot at.
shotPower = 0.5 Power of a single shot.
burstLength = 2 How many shots can be fired in a single burst.
burstSpeed = 5 How many frames between each shot in a burst
burstCharge = 40 How long it takes to recharge after the first shot of a burst

has been fired.

[placed] Hologram Holograms can be used to place markings and graphics
on the floors and walls and above them. Holograms are
not solid, so you can walk and shoot through them.

shape = bspGroundStar The default shape is a four-pointed star that is on the

ground. In many cases, you want to use something more
interesting. Marker white (color 254 254 254, or named
"marker") is replaced with the fill color of the arc.

roll = 0 You can rotate the shape around the Z axis. A bent arrow
pointing left can be made to point right, if it is rolled by 180
degrees.

isAmbient = false Ambient holograms can be turned off by the user to make
the program run faster. If you want to decorate your level
with holograms and yet those holograms are not essential
to game play, it is advisable to make them ambient by
setting isAmbient = true.

[glow] Solid Solids are used when simple rectangular, axis-aligned
walls are not enough. If you wanted to, you could place a
sculpture of the Venus d'Milo in the middle of an Avara
level. You should be aware that collision detection is only
done with bounding boxes and spheres, so even
complicated shapes will still behave as if they were boxes
or spheres. For example you can't shoot through a donut
shaped solid.

shape = w1x1 The default shape is a 5 square meter wall box that is 3
meters high. Marker white (color 254 254 254, or named
"marker") is replaced with the fill color of the arc.

roll = 0 You can rotate the shape around the Z axis.

Solid WallSolid See the description for "WallDoor" to learn how a
WallSolid differs from a regular Solid. Mostly useful if you
want to create a destroyable wall.

Solid FreeSolid The FreeSolid is a bit like a WallSolid and Solid, but
external impulses from shots and explosions can move
them around. They primarily fly and slide on surfaces like
ice cubes.

shape = 0 You can use any BSP shape resource, but if you leave
"shape" as 0, the last wall created will be used just as if
this was a WallSolid or a WallDoor.

mass = 50 Mass determines how easily the FreeSolid moves when it
is hit. A heavier mass will take more power to move.

customGravity = 0.12 Acceleration under standard 1.0 gravity. Note that you can
control the "gravity" variable for the whole level. The
acceleration for this object is calculated by gravity *
customGravity.

accel = 0.95 When in motion, the FreeSolid usually decelerates slowly.
The default rate is 5% slowdown per frame. Changing the

accel value to be closer to one will reduce the "friction".
Making it smaller will increase the "friction", and the rate at
which it slows. Note that FreeSolids do not use the friction
and traction values set for different surfaces when they are
sliding on those surfaces. Reasonable values for this
parameter range from slightly over 0 to around 1.0 (values
greater than 1.0 will make the FreeSolid accelerate until it
hits something.)

shotPower = 0 Like Doors, FreeSolids can cause damage if they hit you
while they are moving.

start = @start
stop = 0
status = false Use these messages to freeze and unfreeze FreeSolids.

For instance, a switch might release a bridge and make it
fall down. The uses are of course endless. (A bridge might
fall down as soon as you touch it. Of course you can use a
Door object for that, but you can't get realistic acceleration
under gravity from a door.)

[shooter] Ball The ball is like a freesolid that is attracted to a HECTOR. It
can be carried by players or placed in a goal.

group = -1 A ball can only be accepted by a goal, if the binary
"and" of their groups is nonzero.

shotPower = 0 Power of a single shot. (Balls do not shoot by default)
burstLength = 3 How many shots can be fired in a single burst.
burstSpeed = 5 How many frames between each shot in a burst
burstCharge = 20 How long it takes to recharge after the first shot of a burst.
mass = 30
goalMsg = 0 Triggered when the ball locks into a goal.
ejectPitch = 20 Angle at which the ball is thrown away from a HECTOR.
ejectPower = 1 Speed at which it is ejected.
shieldChargeRate = 0 Balls have shields that charge, although the default

shields are se to -1 (infinite) and the charging is off.
maxShield = -1 Max shields are set to infinite by default.
shootShield = 10000 The ball will only shoot if its shield has at least this much

power.
grabShield = 0 The ball can only be grabbed by players if its shield is

lower than this value.
carryScore = 0 For each game frame, this many points are awarded to the

player carrying the ball.
dropEnergy = 1 Damage energy at which the ball is dropped by a player

that was hit by explosions or shots. Shots that hit the ball
count as well.

changeHolderEnergy = 0.3 Minimum single hit damage that you have to do to the ball
to consider goals after the event to be made by you. For
instance, you shoot at a ball that is going towards the
enemy goal and you hit it just before it enters: you get the
points, if the hit was worth 0.3 in shield energy.

changeOwnerTime = 0 You have to carry the ball for a certain time before it

changes sides and starts shooting your enemies. Any hits
that it makes are added to your score, after the ball has
changed sides. Time is measured in frames.

customGravity = 0.04 Acceleration under gravity.
acceleration = 0.97 Similar to the FreeSolid param of the same name.

Specifically the rate of slowdown per frame.

Ball Pill Pills (for pillbox) are balls that shoot back and can be
captured. The only difference is in the default parameter
values. The same object is used internally for both
classes.

group = 0
shotPower = 0.3
burstLength = 4
burstSpeed = 6
burstCharge = 32
shieldChargeRate = 0.005
maxShield = 17
shootShield = 15
holdShieldLimit = 15
customGravity = 0.12
shape = bspStandardPill
changeOwnerTime = 100
acceleration = 0.8
ejectPitch = 5
ejectPower = 0.3
watch = playerMask + scoutMask + robotMask

actor Goal Goals accept balls and pills, if their group masks agree
(see description for ball).

group = -1
roll = 0
pitch = 0
deltaX = 0
deltaY = 1.3
deltaZ = 0 The position the ball is attracted to.
goalScore = 500 Score that player gets for depositing a ball in this goal.

The team setting of the goal determines if the points are
positive or negative.

motionRange = 1.3 Attract area of goal.
activeRange = 0.1 When ball enters this area, it locks in and the goal action

is triggered.
goalMsg = 0 Triggered when a goal is made.
goalAction = goalReset What to do when ball enters. Value can be one of:

goalNull (0, ball stays attached), goalDestruct (2, destroys
ball), goalRelease (3, releases ball and ignores it for a
while), goalReset (5, sends the ball back to its initial
position as soon as there is free space there).

[glow] Ramp Ramps are like walls, but they are tilted and you use a
thick-bordered rectangle (3 point frame thickness is

recommended) with an arc segment and the normal
object Ramp parameters = values end to create the
object.

thickness You can change the thickness of the ramp by using a
rounded rectangle or by changing this value.

deltaY = 1 This is the difference in altitude that the ramp
provides. (Look at the illustration below)

thickness

object Ramp
deltaY = 2
end

results in:

deltaY

The angle of the arc controls which way is up. The point of
the arc points in the down direction. Note how the
thickness of the ramp controls how steep it is too. Think of
the deltaY parameter and the rectangle borders as a 3D
box. The ramp itself fits perfectly inside this box, as long as
thickness is smaller than deltaY. The thinner the ramp is,
the steeper the climb itself becomes.

Note that a rectangle with 0 rounding will produce a zero
thickness ramp, unless you change the thickness
parameter.

[glow] Mine This is a proximity mine. It activates if a player moves
close to it or if it is damaged severely enough. An
activated mine can change shape or start to pulsate at a
different rate After the activation period, it explodes. Any
actors within a certain radius will be damaged when the
mine explodes.

shape = bspMine This is the primary shape for a proximity mine. This shape
is used for collision and hit detection, so the alternate
shape is just window dressing (so to speak).

altShape = bspMineActive
This is the alternate shape for a proximity mine.

shield = 1 The amount of damage that the mine can take
before blowing up.

activateEnergy = 0.2 The amount of damage that the mine can take before it
activates.

activeRange = 2 The activation range of the mine. If a player comes within
this distance, the mine actives.

phase = 0 This is the phase that the mine starts up in at the
beginning of the level. For each game frame, the phase is
incremented by one. This variable is useful if you want to
have a group of mines that pulsate in sequence.

freq = 4 The range of the mine is checked for targets once every
freq frames.

activeTimer = 0 The number of frames from activation to blowing up. With
this value set to zero, the mine will blow up immediately
on activation. Think of this as the length of the fuse of the
mine.

idleShapeTimer = 20
idleAltShapeTimer = 0
activeShapeTimer = 2
activeAltShapeTimer = 2 These variables control the speed at which the alternate

and primary shape alternate. A value of zero means that
the shape is not used. The default values mean that an
inactive mine doesn't change shape and an active mine
alternates between the primary and alternate shape every
four frames.

activateSound = snMineBleep
activateVolume = 1
blastSound = snMineBlow
blastVolume = 25

The activation sound starts playing when the mine is
activated and is silenced when the destruct sound is
played. You can set a sound loop for the activation sound
so that it plays for an indeterminate period (for example a
periodic beeping sound to warn that the mine has been
activated). The destruct sound should be the sound of an
explosion or energy burst.

power = 4 The damage done at a distance of 1 meter or less. From 1
meter on, the damage done is power/distance^2. The
minimum damage is 1/16 units, so a mine with a blasting
power of 2 will do the minimum 0.0625 units of damage at
a distance of 5.6 meters.

shield = 1
destructScore = 20
hitScore = 5
activate = 0 Message used to activcate a mine. For instance, you

could set a long fuse (activeTimer) set activate = @start.
start = @start
stop = 0
status = false

[glow] Ufo Ufo stands for Unintelligent Flying Object. They may seem
quite smart, but actually it's all instinct and no intelligence.
:-) It uses happiness scores to determine what it should
do. A course of action is evaluated and if it gets higher

points than the current action, the new action is
implemented.

shape = bspUfo A funky flying saucer with two colors defined. Two color
replacements can be made. The default shape uses the fill
color for most parts and the outline color for the interior.

mask = allTeams
watch = playerMask What to watch for and shoot at. You can make Ufos that

only attack scouts or that attack just about anything. For
more information on what kinds of values the watch and
mask can take, please see the section near the end of this
manual.

acceleration = 0.017 Maximum acceleration per frame. Larger numbers
increase the top speed, smaller ones decrease it. The new
speed = (old speed + acceleration) * 0.99

checkPeriod = 45 The frequency at which the Ufo re-evaluates its position.
Note that if the Ufo is shot at or collides with something,
this period is significantly (and automatically) reduced.

attack = 0.9 The probability that the Ufo will prefer move to a position
where it can attack the target.

defense = 0.5 The probability that the Ufo will choose to attack soon after
it has been damaged. The actual probability is usually
between attack and defense and always starts at attack.
When the Ufo is hit, the probability changes towards
defense. If it is left alone, it slowly returns to the attack
value.

activeRange = 100 This is the radius within which the Ufo looks for targets to
shoot at.

motionRange = 40 Range in meters that the Ufo will consider when it moves
to a new position. Smaller values make the Ufo move in
shorter segments.

verticalRangeMin = -1
verticalRangeMax = 4 Vertical range of motion from ground level.

These scores are used internally by the Ufo AI to
determine how good a course of action seems to it:

visionScore = 1 A value relative to this score is awarded or deducted when
a Ufo sees a target. When it is attacking, seeing the enemy
is obviously a bonus, so this number is added. When it is
defending, being visible is a bad thing, so the score is
subtracted.

hideScore = 0.3 If there's an interesting target close by, this score is
awarded even if the target is not visible. It doesn't matter if
the Ufo is attacking or defending.

homeSick = 0.1 The Ufo is biased towards going back to its "home" (or
original) position. Higher homeSick values will make it
more eager to keep close to home.

homeRange = -1 A negative homeRange value means that the algorithm

only uses the "homeSick" value and keeps the Ufo in
loose vicinity of its home base. For positive homeRange
values, anything within "homeRange" radius from the
home base is ok and doesn't affect Ufo movments, but
outside that, the distance * homeSick is subtracted from
the "score". A short homeRange combined with a high
homeSick value will keep the Ufo close to its home base.

homeBase = 0 See the description for the "Base" object to learn how Ufos
can be guided through the use of this message input.

shotPower = 0.5 Power of a single shot.
burstLength = 2 How many shots can be fired in a single burst.
burstSpeed = 5 How many frames between each shot in a burst
burstCharge = 40 How long it takes to recharge after the first shot of a burst

has been fired.
start = @start This message activates the Ufo so that it moves around

and tries to shoot its targets.
stop = 0 This message stops the Ufo.
status = false Initial status for Ufo (active/inactive).

[glow] Parasite Parasites are normally dormant, but start moving towards
a player if they see one. When they touch a player, they
clamp on and stay attached until destroyed. Parasites
draw energy from the host while clamped on.

shape = bspParasite Default parasite shape is small. Two color replacements
can be made. The default shape uses the fill color for most
parts and the outline color for the interior.

activeRange = 40 Parasites scan the area close to them for visible players.
This variable defines that range.

accel = 0.03 This is the acceleration/frame when moving. Friction is
fixed at 5% of speed, so theoretically the top speed is
accel * 0.95 / 0.05 = 0.57 meters/frame.

sound = snParasiteAttach
volume = 0.5 Parameters for sound that is produced when the parasite

connects with a host.
drain = 0.01 Energy drawn each frame. Shields are drained at half this

speed.
maxPower = 1 Half the energy is used to increase the energy of the

parasite. When it reaches maxPower, the parasite
explodes.

mass = 50 When a parasite is attached, its mass reduces the
maximum acceleration of the player. If a HECTOR's mass
is 200 kg, a 50 kg parasite will reduce acceleration by
20%.

[glow] Guard Guards are stationary guns that rotate to track the closest
target and fire when they have a clear line to the target.

shape = bspGuard This resource controls the form of the guard. Missile bolts
are fired from the origin of the shape.

fireMsg = 0 This message causes the guard to fire. Normally guards
fire automatically when they track a target, but you can use
this message to make them fire on other occasions as
well.

start = 0 This message activates the guard so that it starts tracking
targets in its zone.

stop = 0 This message makes the guard stop tracking targets.
Combined with the start message, you can make guards
watch for activity in a small area only.

speed = 0.5 Adjusts the maximum speed at which the guard turns to
track targets.

shotPower = 1 Adjusts the power of the missiles that are fired. Higher
numbers cause more damage to the object that they hit.

freq = 30 Determines how often the guard can shoot. (In frames)
watch = playerMask Guards only track and shoot objects of certain types.

playerMask and scoutMask are valid values and may be
added to combine them.

shield = 5
destructScore = 100
hitScore = 50
power = 1

[placed] Dome Domes are special in that the size of the arc and its
opening angle also determine the shape. You can create
quarter domes, half domes, 3/4 domes and full domes
(with circles!)

hasFloor = false By default, domes do not have floors. If you want it to have
a floor (if you want to view it from underneath), set
hasFloor to true.

pitch = 0
roll = 0 You can pitch and roll domes.

[placed] TriPyramid A tripyramid is just a special kind of solid. Place it with an
arc segment. The base of the "pyramid" is a triangle. The
only thing that is special about this object is that collision
detection is accurate, because the object actually consists
of a corner of a cube that is rotated so that it is upright on
the ground.

[glow] Door A door can be any shape that moves when it receives an
open or close message. The closed state is the default
position and orientation of the object. When opened, the
door tries to move from it's closed state to the open state.
The open state is defined by a 3D translation and three
rotation (pitch, yaw and roll).

Note that you can use any BSP shape as a door. A

particularly useful shape for a door is the w1x1 wall block,
since you can create walls that move around.

deltaX = 0
deltaY = 2.6
deltaZ = 0 These variables define the position of the door in its

open state. The default door moves straight up.

pitch = 0
yaw = 0
roll = 0 These variables define orientation of the object in its open

state. The rotations are applied in the order they are listed
here.

openSpeed = 2
closeSpeed = 2 To change the speed at which the door opens or closes,

change these variables. The numbers are in
percents/frame, so anything between 0 and 100 is valid.

open = 0
close = 0 These are the messages that cause the door to open and

close. See the chapter on messages to get an
understanding on how these variables work.

didOpen = 0
didClose = 0 The door sends these messages when it closes or opens

completely. Useful for making perpetually moving doors.

openDelay = 0
closeDelay = 0 Once a message is received, the door waits for a certain

number of frames before it starts to open or close.

status = isClosed This is the initial state of the door. (isClosed = 0, isOpen =
1)

openSound = 400
closeSound = 400
stopSound = 401
volume = 15 The door can make a sound when it is opening, closing or

stopping. The numbers are resource numbers for 'HSND'
resources. You should define a sound loop for the
opening and closing sounds so that the sound plays as
long as the door is moving.

guardDelay = 5 When a door bumps into something, they move back a
little and then try to resume their motion again after a few
frames. You can control how many frames they move back
by setting the guardDelay. If you don't want the door to
move back, set it to 0. But remember that this can cause
the player to become stuck between a door and a solid
with no other way out except to self-destruct!

shotPower = 0 Normally doors act like polite elevator doors should: if you

step in their way, they'll kindly move back and forth until
you are no longer in the way. If you set shotPower to
something other than 0, the object that is in the way of the
door will get a jolt similar to a mine blast of shotPower
going off at the location of the door. This pushes the
obstacle away and does some damage too.

Door Door2 This is a slightly modified version of the regular door. In
addition to an "open" and closed" state, an intermediate
position is also defined.

middle = closed This is the middle position. A useful setting would be
something like 0.5, but if you keep it at closed, you can
actually change the orientation of the door when it is in the
closed state.

midX = 0
midY = 0
midZ = 0 These variables define the position of the door in its

middle state. The default matches a closed door.

midPitch = 0
mid Yaw = 0
midRoll = 0 These variables define orientation of the object in its

middle state. The rotations are applied in the order they
are listed here.

Door2 WallDoor This is a slightly modified version of the Door2 object. It
takes the last wall that was added in the game and uses
that shape and location as the door shape and location.
Note that the y parameter is added to the existing location
of the wall, making it unnecessary to use the "wa" variable
with the wall itself.

[placed] Switch This is a solid actor with two possible shapes. Remember
that you can set the shields value so that after a certain
amount of damage from hits, the switch will destruct! (Or it
might destruct if you hit it too hard.) If the switch destructs,
it will of course not toggle.

shape = bspSwitchOff
altShape = shape+1 If altShape is 0, only one shape will be loaded and the

switch will not change appearance when toggled.
togglePower = 0 You can set a minimum missile energy level to toggle a

switch. Zero means that any missile hit will toggle it.
blastToggle = 1000 This is the power that is necessary to toggle the switch

when the damage is caused by an explosion. If this value
is set high enough, exploding objects (such as grenades,
guided missiles and mines) can not be used to toggle the
state of the switch. The default value is large enough to
prevent the switch to be toggled in most cases. Lower this
parameter only if you want explosions to affect the switch.

status = false This is the initial status of the switch.
hitSound = snSwitch
hitVolume = 2 This sound is played when the switch changes state. If you

want two different sounds, set sound to zero and use two
separate sound objects.

restart = true If restart is false, the switch can change state only once.
out = 0
out[0] = out
out[1] = out The out[0] message is sent when the switch turns from on

to off (from altShape to shape) and the out[1] message is
sent when it turns from off to on (from shape to altShape).
To set both messages at once, just modify the "out"
variable.

in = 0
in[0] = in
in[1] = in The message in[0] turns the switch off, in[1] turns it

on. If in[0] is equal to in[1], the state is toggled each time a
message is received. If the switch doesn't change state
when a message is received, no outgoing message is
sent. You only need the in messages to control a switch
under program control.

Note: If the switch states have different bounding volumes, it is
possible to block a switch so that it doesn't change state
when it actually should. In this case, the switch changes
state as soon as it becomes unblocked. The default
ON/OFF switches do not have this behavior, because their
bounding volumes are identical and thus they can not
become blocked.

[placed] Teleporter Teleporters transport players between distant locations.
The player enters a teleporter and if there is another one
in the destination group that is vacant, is transported there.

group = 0 Each teleporter belongs to a group (note that you can use
@name to name groups, similarly to the way messages
can be named). The group is a destination address and
can be shared between several teleporters.

destGroup = group If a player enters the teleporter and a teleporter from this
group number is available, the player is transported to it. If
several teleporters of this group are available, the one that
has been used least will be selected. Usually this means
that if two players enter a teleporter, they end up in
different locations if there is more than one free teleporter
in the destination group.

shape = bspTeleporter This is the default teleporter shape. If you want an invisible
teleporter, set the shape value to 0 (zero).

sound = snTeleporter
volume = 10 A transported player makes a sound while traveling. The

sound actually moves from the source to the destination,

so at very long distances, the doppler shift can be very
severe if the sound is short.

speed = -15 By default, the teleporter is rotating at this angular speed
(in degrees) per frame. At this speed, the teleporter makes
a full rotation every 24 frames. Setting the speed to 0 can
help performance, but will not look quite as nice with the
default shape.

fragment = true For effect, the player leaves behind an imploding set of
fragments and arrives with a small set of exploding parts.
These of course slow things down, so if you want you can
disable this option. Note that the sending teleporter
controls the effect at both ends.

spin = true For effect and disorientation, the player emerges from the
other end spinning around. You can disable this option by
setting the variable to false.

win = -1 The player who enters a teleporter with a 'win' setting
greater or equal to 0, wins the level and gains as many
points as defined by 'win' . It is usually a good idea to use
a different shape or color for the win teleporter or mark it
otherwise (with a hologram, maybe). If you do not change
the group variable to something else than 0, players may
end up teleporting right to the end teleporter, since the
end teleporter can act as a receiver just as well as any
other teleporter.

mask = allTeams You can prevent certain teams from being transported
from a teleporter (and from winning by entering a 'win'
teleporter) by changing this mask. To allow only teams 1
and 2 to use this teleporter, mask = T1+T2

start = @start
stop = 0
status = 0 You can activate and deactivate teleporters with

messages.
isAmbient = false Teleporters can be used to make rotating holograms. You

simply set start to 0 (to disable the teleporter), group to
something you do not use (I suggest -1) and the shape
and speed according to your liking. Set isAmbient to true,
if the shape is not essential to game play.

activeRange = 0.25 Teleporters will "energize" the player only if the player is
within this range of the teleporter origin. This means that if
you set this value to something big (like 2000), all the
acceptable players in the game will be transported.

deadRange = 0 If the player is within this range, he/she will not be
transported. This is useful for forcing the player to play
within a bubble. If the player is outside deadRange, but
inside activeRange, he/she will be transported to
wherever you want. Sort of like an invisible boundary.

showAlways = false Normally the teleporter is only shown when it is active. If
this is set to true, inactive teleporters look identical to

active ones.
hitScore = -1000000 The "hitScore" parameter has a special meaning for

teleporters. You can use it as a minimum entry limit for the
teleporter. This way, you can allow the player to enter
when he/she has at least "hiScore" points.

in = 0
out = 0 Unlike "Logic" objects, both the in and out parameter are

used as message outputs. The "in" message is triggered
when someone is transported into this teleporter and the
"out" message is triggered when someone is transported
somewhere else. The "out" message is also triggered
when someone wins through this teleporter.

[glow] Walker Biped machine controlled by the user (the HECTOR). By
placing these actors in the game, you specify initial
positions for players who choose the same team.
Alternatively you can also use "Incarnator" objects for
placing Walkers, but then you do not have access to the
parameters below.

team = 1 Specifies the team that the player belongs to. Team
numbers range from 1 to 6 with zero reserved for the
neutral team. (Zero may not be used for human players.)

incarnateSound = snIncarnate
incarnateVolume = 12 These define the sound and volume that is used when a

player is created or recreated after being destroyed.
winSound = snWin
winVolume = 12 These define the sound and volume that is used when the

player reaches a "win" teleporter and is beamed out of the
game.

[placed] Incarnator Incarnator posts are used to recreated dead or new
players. They are not visible, unless you mark the location
with a hologram. If no suitable Walker objects can be
found for a player at the start of a game, a new walker is
created at an incarnator spot.

When players are destroyed, but they have lives left, they
are recreated at incarnator spots after a short delay.
There should be at least one incarnator spot on every
level. Otherwise dead players will remain in limbo forever.

mask = allTeams You can control which teams use a particular incarnator
spot. For multiple team games, you could recreate players
only in their home base.

status = true By default, incarnators are enabled so that they can be
used for creating new players. If you have a level where
game play progresses from one point to another, you may

want to enable incarnation points as the player[s] progress
through the level.

start = open
stop = close
open = 0
close = 0 Use the start and stop messages to enable and disable

incarnators. Open and close work as well, because the
default values of start and stop reference them. (In other
words: use the ones you feel more comfortable using…it's
a matter of personal preference.)

[actor] Area Areas are used to watch for players and other actors
entering and exiting circular areas. The circle preceding
the object definition defines the area to be watched.

watch = playerMask What to watch for (similar to Guard).
mask = allTeams What teams to watch for.
freq = 5 How often the area is checked.
enter = 0
exit = 0 Messages that are triggered on entering and exiting this

area.

[actor] Field Force fields push objects within their range in a certain
direction.

visible = false If this value is set to true, the shape that defines the area of
the force field will be visible. Force fields are invisible by
default.

shape = 0 If the shape value is 0, the last wall created will be
converted into the force field shape.

deltaX = 0
deltaY = 0.2
deltaZ = 0 This is the direction in which the force field

accelerates the player. Note that the actual acceleration
depends on the mass of the player. Heavier players are
harder to accelerate.

start = @start
stop = 0 You can turn the force field on and off using these

messages.
watch = playerMask What to watch for (similar to Guard).
mask = allTeams What teams to watch for.
enter = 0
exit = 0 Similar to an Area object, these messages are triggered

when something enters this area.
speed = 0 If you are using a visible hologram as the force field, you

can have the hologram spin at "speed" (degrees per
frame).

Area Text Text objects are used to place messages on the console
displays of players. They can be activated by the area or a
message or a combination of both.

text = "text" This is the text that is shown.
in = 0 This message activates this Text object. If it is zero,

anyone entering the area will receive the message upon
entering.

showEveryone = false Only the players occupying the the area will receive the
message. Here's a table of how this works with the "in"
message:

showEveryone in Effect
false 0 A player entering the area will see the text
false set Players within the area will see the text when the in

message is received.
true 0 Everyone will see the message when any player enters

the area.
true set Everyone will see the message whenever the in message

is received.
restart = 75 This is a delay in frames until this message can be shown

again. Use this parameter to prevent showing the same
message over and over many times when an in message
might be received frequently or the player moves in an out
of area bounds.

wait = 0 This is a delay in frames from the time the message was
triggered to the time that it will be shown. If you have a
long message to show, you can break it into parts and
show the parts with a delay.

start = @start
stop = 0
status = false Enable/disable showing this message by changing the

initial status and the messages.
sound = snTextBlip
volume = 0.25 Sound to play for this text message.
align = centerAlign How to align the text. Can be: leftAlign, centerAlign or

rightAlign.

[placed] Goody Goodies are used to add to the capabilities of a player. It
works similarly to a force field: a player that overlaps with
the hologram will receive the prize.

shape = bspGoody The default shape looks a bit like a mayan pyramid. You
can control the two colors used in the shape with the fill
and outline color of the arc used to place the goody. Note
the recommended color codes below for each
type of goody. Alternatively, you can use the shapes for
different objects, such as bspMissile and bspGrenade to
represent various powerups.

altShape = 0 This shape is shown when the goody is disabled. The
default value of 0 makes the goody invisible when it is not
enabled.

grenades = 0 Number of grenades awarded. (yellow)
missiles = 0 Number of missiles awarded. (magenta)

boosters = 0 Number of boosters awarded. (red)
lives = 0 Number of extra lives awarded. (white)
rearShield = false Set to true, if a rear shield is awarded. (?)
shield = 0 Shield strength awarded. (blue)
power = 0 Energy awarded. (green)
boostTime = 0 An immediately activated booster is awarded. The booster

lasts for boostTime frames. (red)
hitScore = 0 Points are awarded for touching this goody. (Goodies can

NOT be hit or destroyed.) (black)
start = 0
stop = 0
status = true The goody can be controlled with messages and its initial

status can be set with status.
out = 0 The goody can trigger a message when it is taken.
sound = snGoody
volume = 0.5 This sound is played when the goody is taken.
openSound = 0 This sound is played when the goody is enabled.
closeSound = 0 This sound is played when the goody is disabled.

speed = 0 Similar to teleporters (rotating speed for shapes)

text = true NOT IMPLEMENTED YET
Show a text message describing the contents of this
goody when it is activated.

[placed] Sound Sound objects can be used for a wide variety of purposes.
They can either be tied to a place or you can just play any
arbitrary sound at any volume. You can even play music
with them.

y = 10 Y coordinate of location (X and Z are determined by th last
arc segment, exactly like any placed actor).

isPlaced = true This sound is tied to a place. Player movements affect the
way the sound is played (left/right balance, phase balance
and Doppler shift).

isMusic = false
isAmbient = true Ambient or music sound tracks can be disabled through a

menu selection by the user. A user might want to disable
ambient sounds to leave more processing power for
graphics, to hear non-ambient sounds more clearly or to
simply save some memory. If a sound object is in any way
non-essential to game play, leave the isAmbient flag set to
true. If the obejct plays music that is not absolutely
essential to the level, set the "isMusic" parameter to true.

rate = 1 Sound playback rate relative to the default rate of the
sound resource.

loopCount = 0 Sound resources can contain looped sections. This
variable defines how many times the looped section is
played. A value of 0 is special and means that the default
loop count of the sound in question is used.

sound = 0 Resource id of 'HSND' resource to play.
volume = 10 Sound volume for a placed sound.
volume[0] = volume
volume[1] = volume If the sound is not placed in a certain location, you can

control the left and right volumes of the sound. Note that
for a true 3D effect you should also specify a phase
difference. volume[0] is the left side, volume[1] is right. Use
lower volume settings than you would for placed sounds.

phase = 0 The phase difference only applies to non-placed sounds
(same as volume[0] and volume[1]). It has no effect on
sounds that have "isPlaced" set to true. A negative phase
will place the sound to the left and a positive will place it to
the right. The exact number depends on the output
sampling rate. Experiment with values between -100 and
100 to see how it works.

restart = true If restart is true, the sound can be played again by
issueing a new start command.

These are the message inputs for controlling the sound:
start = @start The start message obviously makes the sound start

playing. By default it is set to the @start message, which is
issued when the game starts.

stop = 0 The stop message causes the sound to stop immediately.
kill = 0 The kill message causes the sound to stop and sets restart

to false so that another start message will not activate it.

Logic

Logic objects are not visible, but allow you to combine messages in strange and interesting
ways.

[actor] [logic] An abstract class of objects. They share the out[#]
variables and restart flag

out = 0
out[0] = out
out[1] = 0
out[2] = 0
…
out[9] = 0 When a logic object activates, it can send up to ten

messages out. To send the @openSouthWestDoor
message, you would declare:

out = @openSouthWestDoor
restart = true If this variable is set to true, the same logic object can be

used more than once. When the conditions are triggered
and messages are sent out, the logic object is reset to its
original condition.

in = 0

in[0] = in
in[1] = 0
in[2] = 0
…
in[9] = 0 You can have up to ten input messages in a logic object.

[logic] Timer Counts frames from activation and sends message when
the timer expires. Note that a new incoming message can
be used to postpone an active timer. (For instance, you
can create a door that stays open as long as a switch is
triggered regularly.)

wait = 16 Wait for 16 frames before triggering. A negative timer
value indicates that the timer should start counting
immediately.

[logic] Delay Similar to Timer, but several messages can be in a sort of
pipeline. If a timer receives more than one message
before it activates, it will activate after "timer" frames from
each activate message. One Delay logic timer can have
up to 32 delayed messages queued.

If you need a one-shot timer, set restart to false. New
messages that arrive after the first one will no delay the
triggering any further, because they will be queued.

wait = 16 Delay in frames.

[logic] And All defined in[#] ports have to become true before this
logic object activates.

[logic] Counter Counts incoming messages. A message on any input port
is counted and when the count is reached, the out
messages are sent.

n = 1 Count to active. With this setting and the restart value set
to "true", the Counter object effectively acts as an "or" gate.

[logic] Distributor Each activation activates a different out[#] message. The
first time it's out[0], then out[1], out[2] and out[3].
Any undefined (0) out[#] messages are simply skipped. At
least one has to be defined, of course. If the restart option
is true, (it is set by default) after out[3] has been triggered,
the next one is out[0] again.

[logic] Base This is a very special logic object. It has a location, so it
uses the 'y' and 'baseHeight' variables and it has to be
associated with an arc segment. When it receives an 'in'
message, it sends an immediate message for each 'out'
that has been defined. In this respect, it's a lot like an "Or"
object, so it can be used as such. Ufo objects can detect a

message coming from a "Base" object and they will
change their home base to the location of the base object.

The idea is that you can make a Ufo object travel a route
or change destination by using Base objects combined
with the "homeBase" variable of the Ufo.

Adjusters

Adjusters are a special class of object. They are not actually kept in the game, but they are
used to change various game parameters.

[placed] GroundColor The last arc segment drawn before this object was created
defines the color of the ground for this level.

[placed] SkyColor The last arc segment drawn before this object was created
defines the color of the sky for this level.

n = 8 The horizon is shaded with this many colors. The colors
range from the arc frame color (sky) to the fill color
(horizon).

verticalRangeMin = 0
verticalRangeMax = 1000 The shading range is controlled by these two parameters.

You may have to increase either one of the values, if your
level has very high places and you want to avoid the effect
of painting the ground with the horizon colors.

Here's how you use these two adjusters:

adjust SkyColor end

adjust GroundColor end

[actor] [yon] Yon limiter objects are special objects that do not have an
effect on other game objects. Instead, they control the
distance that is visible from within them. The primary
reason for them is that if you have a level with tight spaces
and insides, you can change the visible distance within a
room or area to a smaller value to optimize drawing
speed.

Avara rendering is significantly slowed down by walled
areas, because the objects behind the walls also need to
be considered for drawing. If the yon distance is limited,
the number of objects considered for rending is
diminished and performance is improved.

You can overlap multiple yon objects and the lowest yon
value will then be used in the overlapping area.

y = 0 Yon objects are placed using either thick rectangle or
circle shapes and their altitude on the map is defined by y
+ baseHeight. (Just like normal objects)

yon = -15 Negative values are treated so that the actual yon bound
is an extension of the area's diameter. So a sphere with a
10 meter activeRange (or radius) would have a yon value
of 10+10+15 = 35 meters by default.

[yon] YonSphere This object is created in very much the same way as the
area object, except you can use the range variable if you
want. The idea is that when the viewpoint is in this sphere,
the view distance is controlled by the "yon" variable of this
object.

activeRange = 0 If you set the activeRange to something other than 0, it will
be used instead of the circle radius.

[actor] YonBox Similar to the YonSphere, but with this object you can
define a box-shaped area for the yon limiter. You use a
thick-bordered box to define the area. Use a pen thickness
of 3 points, for best results. (It's similar to a Ramp object,
except it doesn't need the arc that ramps use)

deltaY = 0 If deltaY is zero or negative, the rectangle corner rounding
radius is used as the height of the yonBox. If the rectangle
corners are unrounded, deltaY is "infinite" and the box
area has no top or bottom limit.

Other Variables

Walls are created with rectangles and rounded rectangles. By default, they are all placed on
ground level, but you can adjust the level of individual blocks by setting the wa variable
before the wall is created. After each wall block, this variable is reset to zero. Here's an
example:

wa = 1.8

Note how the text is under the rectangle. It doesn't have to be located underneath the
rectangle, but it has to come before the rectangle in order to have an effect on that
rectangle.

The variable wallHeight is used to control the height of walls that are made with regular
(non-rounded) rectangle. It applies to any walls that are created after the parameter has
been changed.

The baseHeight variable is added to the altitude of all walls and is not reset after each
wall. If you want to have a set of walls at a certain altitude, change wb to that altitude and
change it back to zero after the walls have been created. Note that it also affects all objects
that inherit from the "placed" class, so if you change the baseHeight, it will affect practically
all visible objects.

The variable wallShield sets the shield strengths for all the walls that are defined after the
change. A negative shield value is indestructible. This is similar to the "shield" parameter for
regular objects with the difference that once changed, it does not reset back to a default
value, so you have to change it back yourself. The "wallPower" variable sets the blasting
power of a wall. When a wall is destroyed, it behaves like a mine of "wallPower" power.

The variable "wallYon" is used to control the clipping distance of walls. See the discussion
of the "yon" parameter for regular actor objects.

Walls also have traction control with the variables wallTraction and wallFriction. See the
section on traction control variables for more information.

Level Variables and Special Messages

Level variables do no affect a particular object, so they do not need to be inside object
definitions. They affect the whole level. Here's the list of variables:

 // Lights (default light settings are stored here)
 ambient = 0.4
 light[0].i = 0.4 light[0].a = 45 light[0].b = 20
 light[1].i = 0.3 light[1].a = 20 light[1].b = 200
 light[2].i = 0.0 light[2].a = 45 light[2].b = 90
 light[3].i = 0.0 light[3].a = 45 light[3].b = 180

There are four posible light sources in addition to ambient light. To place a lightsource, give
it an intensity (the i component) between 0 and 1.0. The two angles indicate the direction
that the light is coming from. The b angle is the compass reading and the a angle is the
angle from the horizon. All lights are monochromatic white.

Ambient light is not directional. For the most natural lighting, use some ambient light along
with at least one or two directional lightsources. Directional lightsources cause a significant
amount of calculations to be done, so in most circumstances you only want to use two.
Using only one directional light source makes objects look quite dull on the side that is in
the shadow.

For each level, you should set the level designer name using the designer variable and the
level information using the information variable:

designer = "Inigo Montoya"
information = "You killed my father - prepare to die."

There are a few special special messages in Avara. The @start message that is issued at
the start of a level. It was originally designed to start ambient sounds, but can be used to
start timers and all kinds of interesting logic constructs. If you need a clock, you would use a
delay:
 object Delay
 in[0] = @start
 in[1] = @clockLights
 out[0] = @clockLights
 delay = 15 // about one second
 end

If you need to send messages to objects in a sequence, use a distributor with the above
clock:
 object Distributor
 out[0] = @turnOn1
 out[1] = @turnOn2
 out[2] = @turnOn3
 out[3] = @turnOn4
 in[0] = @clockLights
 end

The @win message is issued when in a multiplayer game the last player is left standing.
This is useful for a deathmatch where everone fights everyone else. @winTeam is issued
when only one team is left to battle. This is useful for team battle where you want th
message to be triggered when a team has annihilated all other teams.

The following variables control the special player weapons:

 grenadePower = 2.5
 missilePower = 1.0
 missileTurnRate = 0.02
 missileAcceleration = 0.2

The following variables control the maximum amounts of weapons that a player may carry
at the start of a level:

 maxStartGrenades = 20
 maxStartMissiles = 10
 maxStartBoosts = 5

The "lives" variable controls how many lives players have at the start of a level. The default
value is 3.

"gravity" controls the gravity on a level. The default value is 1.0.

"friendHitMultiplier" is used when a player hits an object belonging to the same team. The
default value is -1, meaning that the points are deducted from your score instead of being
added. For a game where everyone is fighting everyone else, regardless of team, use a
multiplier value of 1.

Target Groups and Object Masks

Ufos and Guards can be made to target different kinds of objects, belonging to various
different teams. The default is that they belong to the neutral (computer) team and shoot
players of all other teams. The "watch" variable determines what types of objects are to be
shot at. It can be a combination of: playerMask, scoutMask, robotMask, targ1, targ2, targ3,
targ4, targ5 and targ6. Guards, Ufos and Parasites and other moving automatons are
robots, so they have the robotMask set. Players will have the playerMask and scouts will
have the scoutMask set. The "targ#" masks exist so that you can create your own classes of
targets for robots to shoot at. For instance, you can have a destructible solid that a group of
Ufos is trying to demolish while the player's task is to protect the target. For instance:

object Solid
 targetGroup = targ1
 shape = bspShapeShip
 shield = 10
 killMsg = @playerLoses
end

object Ufo
 watch = targ1 + playerMask
end

The above will create a Solid that looks like a spaceship and can be destroyed and a Ufo
that is interested in destroying the spaceship or any player within its range.

Note that the "mask" parameter can be used to make robot objects take sides. For instance,
to make a Ufo that plays on the green side:

object Ufo
 mask = allTeams - T1
end

The above Ufo will shoot at any players not belonging to the green (team 1) team.

Traction Control Variables

There are three pairs of traction control variables:

defaultTraction
defaultFriction

wallTraction = defaultTraction
wallFriction = defaultFriction

traction = defaultTraction
friction = defaultFriction

The default settings control how the bare ground behaves, so if you want to change only the

ground, change the default values as the last thing on the level description. If you want to
change all objects along with the ground, you can change the default settings as the first
thing on the level.

The "traction" variable represents a speed difference between the legs and the structure
that a HECTOR is standing on. Speeds slower than "traction" exhibit static friction, which
means that the leg is not sliding on the surface. Anything faster and the legs will start to slip
(or slide) and the friction variable is used instead.

possible values for traction and friction:

Material Traction Friction
Slippery ice 0.05 0.05
Smooth steel 0.20 0.10
Ground (default) 0.40 0.15
Rough ground 0.40 0.40

You can set the traction or friction variables to zero, but do no set both of them to zero or the
player may have a lot of difficulty getting off the slippery surface. (Of course this could be
done on purpose and you would have to use missiles or grenades for propulsion.)

The highest legal value for the friction variable is 1.0, although in practice you should never
exceed 0.75. The smallest legal value for friction is 0. Using a negative value may produce
interesting, but totally unrealistic results. Traction values can be anything, although values
below 0 will be treated the same as 0. The practical range for both values seems to be from
0 to around 0.4.

3D Modeling for Avara

You can use your own 3D models in Avara levels that you create. To do so, you have to
convert your 3D model files into 'BSPT'-resources. Two separate applications are provided
for this purpose.

The first step is creating a 3D model. There are several considerations that you have to be
aware of. Most importantly, you can't just use any 3D shape and expect Avara to be able to
perform well. You have to learn to keep the number polygons low.

Many 3D renderers allow you to use smooth shapes to describe your objects. These
smooth shapes have to be converted into often large numbers of flat faces, because Avara
can only draw polygons. The BSPViewer application is useful for determining how many
polygons an object uses. Modeling programs often allow you to control the smoothness of
the objects that are exported into DXF file format.

Once you have created a 3D object that you would like to use in an Avara level, you have to
export it to a format that the BSPSplitter application can use. BSPSplitter currently
understands a subset of DXF files and the OFF .geom file format. Since DXF files provide
very poor means to describe the colors of an object, the layer names in the DXF file are

mapped into colors. For instance, StrataStudio Pro uses the layer names to store the names
of the shapes. This means that all you have to do is to group each color into a separate
shape and name that shape. You then map that name in the ColorLib text file into an RGB
color or a set of colors (see the provided sample ColorLib file for details).

The next step is to create a 'BSPT' resource with BSPSplitter. Select the level directory file
you are using as the destination file, choose a suitable resource number between 1000 and
2999, make sure that the ColorLib file is chosen and that the right 3D geometry file is
chosen and then process the geometry file into a 'BSPT' resource. For simple objects,
processing is done quickly, but complicated objects can take a long time. If processing
takes more than a minute or two, your object probably has too many polygons for it to be
realistically used in Avara. You can switch out of the BSPSplitter program while it is
processing the object or you can interrupt the process at any time by holding down the
option, shift and control keys simultaneously (this will quit the application).

You can then drop your level directory file into the BSPViewer application and look at the
BSP resource. Use the left and right arrow keys on your keyboard to scan through the
'BSPT' resources in that file, type in a few letters from the beginning of your model name or
type the resource id number that you used.

The most important function of BSPViewer is backface removal. A polygon has two faces: a
front face and a back face. For most polygons created with a program like "StrataVision",
only the front face should be visible, which is what the default is for shape resources
created by BSPSplitter. In some cases, you want both sides of the polygon to be visible or
you may want the backface (inside) to be visible. BSPViewer allows you to get some control
over what faces are visible.

Hit command-0 (zero) to clear the visibility flags of all faces. This makes the screen go
blank, so have the object somewhere where you can see it. If you hold down the shift key,
BSPViewer will draw all the faces regardless of their visibility status. Important: if you hit
space, BSPViewer finds out which faces and which sides of the faces would be visible if
you held down the shift key and adds those sides to the visibility flags. If you rotate the
object while holding down shift, all the faces visible from the outside of the object become
visible.

If you want only the front faces to be visibile, hit command-1. If you want backfaces to be
visibile, hit command-2. To have both sides of all polygons visibile, hit command-3.

Remember to save the resource (with command-S) after you are done with it and pleased
with the results. If you don't like what you have done, start over (with command-0 or
command-1, usually) or go back to the saved version (just close and open the file again or
choose another shape without saving).

The up and down arrow control the "roll" of the object. Combined with shift, option or
command, the step of rotation increases.

Clicking and dragging moves the object further or closer (up is further, down is closer).

3D Wall and Floor Template Models

This is a very advanced topic. If you are just starting level design for Avara, you can
probably either skim through or skip this chapter.

Normally walls are represented by simple 3D boxes and thin walls (with height 0) are
rectangles. You can change this behavior by changing the variables wallTemplate and
floorTeamplate. Their default values are:

wallTemplate = bspStandardWall
floorTemplate = bspStandardFloor

In addition to the obviously needed 'BSPT' resource, you can optionally also create a
'BSPS'. A template for this resource type is provided with Avara. It defines the outside
dimensions of the template. A wall template should be cubical in shape. The default cube
extends 0.5 meters in all directions, thus the "size" in the template is 0.5. A floor template
should be "square". Note that you can round the corners, if you want, but the aspect ratios of
the shapes should always be 1:1:1 and 1:1. You can make the floor templates thick: the y
direction is always left unscaled/unstretched.

Templates can either be scaled or stretched. Scaling produces results like this:

Scaling works for practically all BSP shapes, so it is used by default. You can not however
use it to make boxes or rectangles with constant width borders. You have to use the more
limited "stretching" mode for that.

Stretching takes the points that are half the dimension away from the origin and offsets
those to make the template the desired size. This imposes some very strict limitations on the
shape of the template, because Avara is unable to change the surface normals of the 3D
faces when this method is used. For this reason, try to keep the normals of all the surfaces
axis-aligned or test your shape properly to see that it draws and shades correctly from every
position.

Stretching the same shape above to the same dimensions as above produces the following
result:

Note how the ends stay the same width as in the template. The following illustrates how
stretching works: the areas inside the dotted lines are not touched during a stretch:

As shown this allows you to have an unchanging shape inside the stretched area.

Appendix: Avara Definitions

This script is loaded before every level. It contains all the built-in variable declarations and
constants for Avara levels.

// Avara variables and constants

// Do not make changes to this resource. To use the
// Variables described here, redefine them in your
// level files. Making changes here will probably
// cause severe compatibility problems. Treat this
// resource as a read-only guide to the variables and
// constants that are available for designing levels.
//
// This resource has to end with a space or return.

 designer = 0
 information = 0
 timeLimit = 2400 // Default time limit is 30 minutes.

 gravity = 1
 customGravity = 0.12

 shape = 0 // Primary BSP shape resource id
 altShape = 0 // Possible alternate shape
 scale = 1
 yon = 0
 wallYon = 0
 hasFloor = 0

 wallTemplate = 400
 floorTemplate = 401

 y = 0 // Height from ground level.
 mask = -1 // Bitmask for object type
 team = 1 // Team id
 wallHeight = 3

 wa = 0
 baseHeight = 0
 pixelToThickness = 1 / 8
 mass = 0
 visible = 0
 thickness = 0

 winTeam = 0

 targetGroup = 0

 // Sound stuff:
 hitSound = 0
 hitVolume = 0
 hitSoundDefault = 210
 shieldHitSoundDefault = 211
 playerHitSoundDefault = 211
 blastSound = 0
 blastVolume = 0
 blastSoundDefault = 230

 stepSound = 161
 groundStepSound = 160

 isTarget = 0

 sound = 0
 openSound = 400
 closeSound = 400
 stopSound = 401

 volume = 15

 // Player related:

 defaultLives = 3
 lives = defaultLives

 incarnateSound = 0
 incarnateVolume = 12

 winSound = 0
 winVolume = 12

 loseSound = 0
 loseVolume = 6

 // Scoring:
 killScore = 0
 hitScore = 0
 friendlyHitMultiplier = -1

 // Damage and explosions
 smallSliverCount = 0
 mediumSliverCount = 0
 largeSliverCount = 0

 smallSliverLife = 0
 mediumSliverLife = 0
 largeSliverLife = 0
 canGlow = 1

 // Messages sent when hit/destroyed
 killMsg = 0
 hitMsg = 0

 // Other messages
 stepOnMsg = 0

 // Motion
 accel = 0

 // Toggle switches
 togglePower = 0
 blastToggle = 1000

 // Doors:
 open = 0
 close = 0
 didOpen = 0
 didClose = 0
 openDelay = 0
 closeDelay = 0
 guardDelay = 0
 status = 0
 openSpeed = 0
 closeSpeed = 0
 pitch = 0
 yaw = 0
 roll = 0
 deltaX = 0
 deltaY = 0
 deltaZ = 0

 middle = 0
 midPitch = 0
 midYaw = 0
 midRoll = 0
 midX = 0
 midY = 0
 midZ = 0

 // Misc:
 power = 0
 maxPower = 0
 drain = 0

 // Guards:
 fireMsg = 0
 trackMsg = 0
 stopTrackMsg = 0
 speed = 0
 shotPower = 0

 // Ufos:
 checkPeriod = 0
 attack = 0
 defense = 0
 visionScore = 0
 hideScore = 0
 motionRange = 0
 pitchRange = 0
 verticalRangeMin = 0
 verticalRangeMax = 0
 burstLength = 0
 burstSpeed = 0
 burstCharge = 0

 homeSick = 0
 homeRange = 0
 homeBase = 0

 // Mines:
 shield = 0
 activateEnergy = 0
 activeRange = 0
 phase = 0
 activeTimer = 0
 boom = 0 // start mine timer message

 idleShapeTimer = 20
 idleAltShapeTimer = 0
 activeShapeTimer = 4
 activeAltShapeTimer = 4

 activateSound = 0
 activateVolume = 0

 // Teleporters:
 group = 0
 destGroup = 0
 spin = 1
 fragment = 1
 win = 0
 deadRange = 0
 showAlways = 1

 // Activators: (areas, etc.)
 watch = 0
 freq = 0
 enter = 0
 exit = 0

 // Text
 text = 0
 showEveryone = 0
 align = 0

 // Goody

 grenades = 0
 missiles = 0
 boosters = 0
 boostTime = 0

 // Ball & goal
 goalMsg = 0
 goalAction = 0
 goalScore = 0

 ejectPitch = 0
 ejectPower = 0
 ejectSound = 0
 ejectVolume = 0

 shieldChargeRate = 0
 maxShield = 0
 shootShield = 0
 grabShield = 0

 carryScore = 0
 dropEnergy = 0
 changeHolderEnergy = 0
 changeOwnerTime = 0

 changeOwnerSound = 0
 changeOwnerVolume = 0

 snapSound = 0
 snapVolume = 0

 // Sounds:
 isMusic = 0
 isAmbient = 1
 isPlaced = 1
 rate = 1
 loopCount = 0
 volume[0] = volume
 volume[1] = volume
 start = @start
 stop = 0
 kill = 0

 // Logic:
 in = in[0]
 in[0] = 0 in[1] = 0 in[2] = 0 in[3] = 0 in[4] = 0
 in[5] = 0 in[6] = 0 in[7] = 0 in[8] = 0 in[9] = 0

 out = out[0]
 out[0] = 0 out[1] = 0 out[2] = 0 out[3] = 0 out[4] = 0
 out[5] = 0 out[6] = 0 out[7] = 0 out[8] = 0 out[9] = 0

 restart = 0
 n = 0
 wait = 0

 // Lights (default light settings are stored here)
 ambient = 0.4
 light[0].i = 0.4 light[0].a = 45 light[0].b = 20
 light[1].i = 0.3 light[1].a = 20 light[1].b = 200
 light[2].i = 0.0 light[2].a = 45 light[2].b = 90
 light[3].i = 0.0 light[3].a = 45 light[3].b = 180

 // Advanced weapon powers:
 grenadePower = 2.25
 missilePower = 1.0
 missileTurnRate = 0.025
 missileAcceleration = 0.2

 maxStartGrenades = 20
 maxStartMissiles = 10
 maxStartBoosts = 5

 // Hull types
 hull[0] = 0
 hull[1] = 0
 hull[2] = 0

 defaultTraction = 0.4
 defaultFriction = 0.15

 wallTraction = defaultTraction
 wallFriction = defaultFriction

 traction = defaultTraction
 friction = defaultFriction

 wallShield = -1
 wallBlast = 4

 dummyVar = 0

// some defines
 true = 1
 false = 0

 playerMask = 1
 scoutMask = 2
 robotMask = 4
 collisionDamageMask = 128

 targ1 = 256
 targ2 = 512
 targ3 = 1024
 targ4 = 2048
 targ5 = 4096
 targ6 = 8192

 canPushMask = 32768

 allTeams = -1
 T1 = 2

 T2 = 4
 T3 = 8
 T4 = 16
 T5 = 32
 T6 = 64

// Doors:
 isClosed = 0
 isOpen = 1

// Text alignment
 rightAlign = -1
 centerAlign = 1
 leftAlign = 0

// bsp resources...doesn't mean you should use them all:
 bspAvara = 100
 bspMissionComplete = 101
 bspAvaraA = 102

 bspGrenadeSight = 200
 bspGrenadeSightTop = 201
 bspMarker = 202
 bspShot = 203
 bspDirInd = 204
 bspTargetOff = 205
 bspTargetOn = 206
 bspSmartMissileHairs = 207
 bspSmartMissileSight = 208

 bspHECTORBoundBox = 210
 bspHECTORLegHigh = 211
 bspHECTORLegLow = 212
 bspHullLight = 215
 bspHullMedium = 216
 bspHullLarge = 217
 bspScout = 220

 bspTeleporter = 230
 bspGoody = 240

 bspStandardBall = 250
 bspGoal = 251
 bspStandardPill = 252

 bspSphere = 300

 bspMine = 310
 bspMineActive = 311

 bspStandardWall = 400
 bspStandardFloor = 401

 bspW1x1 = 411
 bspW2x1 = 421
 bspW2x2 = 422

 bspW3x1 = 431
 bspW3x2 = 432
 bspW3x3 = 433
 bspW4x1 = 441
 bspW5x1 = 451

 // Sphere segments
 bsp16SphereNF = 460
 bsp16Sphere = 461
 bsp4SphereNF = 462
 bsp4Sphere = 463
 bsp2SphereNF = 464
 bsp2Sphere = 465
 bsppSphere = 466

 bspSliver0 = 500
 bspSliver1 = 501
 bspSliver2 = 502
 bspSliver3 = 503

 bspDoor = 550

 bspSwitchOff = 560
 bspSwitchOn = 561
 bspWallSwitchOff = 562
 bspWallSwitchOn = 563

 bspGroundStar = 600
 bspGroundArrow = 601
 bspGroundArrowLeft = 602

 bspVines = 610
 bspCrack = 611
 sbpTree = 1002

 bspTriPyramid = 650
 bspOnSwitch = 701
 bspOffSwitch = 702
 bspTower = 703
 bspGrid10 = 704
 bspMushroom = 705
 bspHingeDoor = 706
 bspFlower = 707
 bspTree = 708
 bspGrid7.5 = 709
 bspHill = 710
 bspStreet = 711
 bspTurn = 712
 bspLock = 713
 bspDeadTree = 714
 bspBigIce = 715
 bspIce = 716
 bspShell = 717

 bspCubeFrame = 720
 bspDoubleCube = 721

 bspFloorFrame = 722
 bspGobbleRect = 723
 bspGobbleTriangle = 724

 bspGuard = 800
 bspBolt = 801
 bspMissile = 802

bspLargeDome = 806
 bspParasite = 807
 bspUfo = 808
 bspShuriken = 809
 bspPlatform = 812
 bspGrenade = 820

 bspStarFighter = 830
 bspTractorTower = 831
 bspShooter = 832

// HSND (sound) resources:
 snUnderwater = 129
 snJungle = 130
 snArcticWind = 131
 snBubbles = 132
 snBirds = 133

 snTextBlip = 150
 snMessageSend = 151
 snMessageReceive = 152
 snStep = 160
 snShot = 200
 snDoorClang = 210
 snHit0 = 210
 snHit1 = 211
 snShieldHit = 220
 snShieldHit1 = 221
 snShieldHit2 = 222
 snBlast = 230
 snBlast1 = 231
 snSwitch = 240
 snGoody = 250
 snMineBleep = 300
 snMineBlow = 301
 snParasiteBlow = 310
 snDoor = 400
 snDoorStop = 401
 snTeleport = 410
 snIncarnate = 411
 snWin = 412
 snLose = 413
 snParasiteAttach = 420

 snBallBuzz = 430
 snBallSnap = 431
 snBallEject = 432
 snBallReprogram = 433

 snGobble = 440

 lightHull = 128
 mediumHull = 129
 heavyHull = 130

// Misc adjustments
 hitSoundDefault = snHit0
 blastSoundDefault = snBlast
 shieldHitSoundDefault = snShieldHit
 playerHitSoundDefault = snShieldHit2
 incarnateSound = snIncarnate

 hull[0] = lightHull
 hull[1] = mediumHull
 hull[2] = heavyHull

designer = "unknown"
information = "

No additional information on this level is available."

unique 32000 end

	Introduction
	Level Directory Files
	Resources
	Level Files and Resources
	The Scripting Language
	Passing Messages
	Avara Objects
	Logic
	Adjusters
	Other Variables
	Level Variables and Special Messages
	Target Groups and Object Masks
	Traction Control Variables
	3D Modeling for Avara
	3D Wall and Floor Template Models
	Appendix: Avara Definitions

